Lexicographic multi-objective evolutionary induction of decision trees

نویسندگان

  • Márcio P. Basgalupp
  • André Carlos Ponce de Leon Ferreira de Carvalho
  • Rodrigo C. Barros
  • Duncan Dubugras Alcoba Ruiz
  • Alex Alves Freitas
چکیده

Among the several tasks that evolutionary algorithms have successfully employed, the induction of classification rules and decision trees has been shown to be a relevant approach for several application domains. Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, conventionally used decision trees induction algorithms present limitations due to the strategy they usually implement: recursive top-down data partitioning through a greedy split evaluation. The main problem with this strategy is quality loss during the partitioning process, which can lead to statistically insignificant rules. In this paper, we propose a new GA-based algorithm for decision tree induction. The proposed algorithm aims to prevent the greedy strategy and to avoid converging to local optima. For such, it is based on a lexicographic multi-objective approach. In order to evaluate the proposed algorithm, it is compared with a well-known and frequently used decision tree induction algorithm using different public datasets. According to the experimental results, the proposed algorithm is able to avoid the previously described problems, reporting accuracy gains. Even more important, the proposed algorithm induced models with a significantly reduction in the complexity considering tree sizes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolving decision trees with beam search-based initialization and lexicographic multi-objective evaluation

Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, traditional decision-tree induction algorithms implement a greedy approach for node splitting that is inherently susceptible to local optima convergence. Evolutionary algorithms can avoid the problems associated with a greedy search and have been successfully employ...

متن کامل

Lexicographic goal programming approach for portfolio optimization

This paper will investigate the optimum portfolio for an investor, taking into account 5 criteria. The mean variance model of portfolio optimization that was introduced by Markowitz includes two objective functions; these two criteria, risk and return do not encompass all of the information about investment; information like annual dividends, S&P star ranking and return in later years which is ...

متن کامل

Constrained consumable resource allocation in alternative stochastic networks via multi-objective decision making

Many real projects complete through the realization of one and only one path of various possible network paths. Here, these networks are called alternative stochastic networks (ASNs). It is supposed that the nodes of considered network are probabilistic with exclusive-or receiver and exclusive-or emitter. First, an analytical approach is proposed to simplify the structure of t...

متن کامل

Using composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir

In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolut...

متن کامل

Evolutionary induction of global model trees with specialized operators and memetic extensions

Metaheuristics, such as evolutionary algorithms (EAs), have been successfully applied to the problem of decision tree induction. Recently, an EA was proposed to evolve model trees, which are a particular type of decision tree that is employed to solve regression problems. However, there is a need to specialize the EAs in order to exploit the full potential of evolutionary induction. The main co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJBIC

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009